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Unbalanced edge modes and topological phase transition in gated trilayer graphene
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Gapless edge modes hosted by chirally stacked trilayer graphene display unique features when a bulk gap is
opened by applying an interlayer potential difference. We show that trilayer graphene with half-integer valley
Hall conductivity leads to unbalanced edge modes at opposite zigzag boundaries, resulting in a natural valley
current polarizer. This unusual characteristic is preserved in the presence of Rashba spin-orbit coupling that turns
a gated trilayer graphene into a Z2 topological insulator with an odd number of helical edge mode pairs.
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Introduction. Gapless edge modes in two-dimensional con-
densed matter physics often appear at surfaces or boundaries
of materials with a well-defined topological order in the bulk.
Well-known examples include the chiral quantum-Hall edge
states characterized by the first Chern number C,1 spin-helical
edge modes in the Z2 topological insulators protected by time-
reversal invariance,2 valley-helical edge modes in graphene,3

and kink states arising between regions of inverted bulk
orbital moments or valley-Hall conductivities.4–10 Recently,
multilayer graphene with chiral stacking has generated much
interest in the community.11 Such a system can develop a
valley-Hall conductivity in the presence of a gap opening
mass term,7 including gapped bilayer5 and single layer.6 For
all these known examples so far it is expected that the edge
modes (chiral or helical) are distributed in equal numbers at
opposite boundaries.

In this Rapid Communication, we study the special behavior
of edge modes in chirally stacked trilayer graphene in the
presence of an interlayer potential difference. We show that
gated trilayer graphene has an unusual spatially unbalanced
distribution of valley-Hall edge modes at sample boundaries
with unequal pairs of edge modes, resulting in a natural valley
current polarizer. We also show that the gated trilayer can be
brought into a topological insulator phase by introducing the
Rashba spin-orbit coupling (SOC). In this case the edge states
are also distributed unevenly and the system is characterized by
different odd numbers of edge modes pairs located at opposite
sample boundaries.

System Hamiltonian. In the following, we present the
general form of the tight-binding Hamiltonian of a gated
trilayer graphene in the presence of Rashba SOC,

H = H T
SLG + H M

SLG + H B
SLG + t⊥

∑
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c
†
i cj
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where H
T,M,B
SLG represent, respectively, the monolayer graphene

Hamiltonian of the top (T), middle (M), and bottom (B) layers,
and can be written as

HSLG = −t
∑

〈ij〉
c
†
i cj + itR

∑

〈ij〉αβ

(sαβ × dij )zc
†
iαcjβ, (2)

where c
†
i creates an electron on site i, and t is the intralayer

hopping energy between nearest neighbors. The Rashba SOC12

strength is measured by tR, where s are spin Pauli matrices,
and dij describes a lattice vector pointing from site j to site i.
The interlayer hopping t⊥ couples two neighboring layers in
a Bernal stacking pattern. Finally, the gate bias 2U is applied
by setting the lattice site potentials to be +U , 0, and −U on
the top, middle, and bottom layers, respectively.

Quantum valley-Hall edge modes. When a perpendicular
electric field is applied on a multilayer graphene, a nontrivial
bulk gap opens to host a quantum valley-Hall state. This is
characterized by a valley Hall conductivity given by σv

xy =
(σK

xy − σK ′
xy )e2/2h for the spinless case,7,13 where σK,K ′

xy is
obtained by using a continuum model at K or K ′. When these
two valleys are separated and intervalley scattering is avoided,
such valley Hall conductivity assumes an integer (semi-
integer) value for even (odd)-N layers of graphene stacks.14

Such a bulk quantization only has edge correspondence
at specific system boundaries. For example, zigzag ribbon
geometries with large momentum separation between valleys15

can support valley-Hall edge modes, manifesting the quantized
valley-Hall conductivity of the bulk.7 For even N , we can see
an integer number of valley-Hall edge mode pairs located
at both edges, in keeping with the integer quantization of
valley-Hall conductivity. For odd N , however, a qualitatively
distinct feature is observed in the valley-Hall edge modes that
we discuss at length in the following. Due to the requirement
of absence of intervalley scattering, the quantum valley-Hall
state is considered as a “weak” topological state, compared
to the topologically protected quantum-Hall effect. This
scenario resembles the requirement of time-reversal symmetry
protection in Z2 topological insulator.

Figure 1(a) plots the band structure of a zigzag-edged
trilayer graphene ribbon in the presence of an interlayer
potential difference U = 0.1t . One can clearly observe the
valley-Hall edge states in the vicinity of each valley inside the
bulk gap. At charge neutrality, the edge modes in the system
are formed by the left- and right-going states within the same
valley (A,B and E,F) located at opposite edges, as illustrated
schematically in Fig. 1(b). As soon as the Fermi level is
shifted from neutrality, the system acquires two additional
edge modes, labeled for the electron-doped case with the letters
C,D in Fig. 1(a). This additional pair of edge modes forms two
counterpropagating channels with opposite valley flavors, and
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FIG. 1. (Color online) (a) Band structure of a zigzag-terminated
trilayer graphene ribbon in the presence of an interlayer potential
difference proportional to U = 0.1t . Letters “A–F” label the six edge
states inside the bulk gap with the same Fermi energy. (b) Edge modes
of the edge states labeled in (a). Spins are doubly degenerate and
valleys are associated with the edge states. Note that there are two
pairs of valley-helical edge states at the upper boundary, while only
one pair is localized at the lower boundary.

is located at the same boundary of the ribbon, giving rise to a
net valley-polarized current. The real-space edge location can
be reversed by changing the direction of the external electric
field. At the same time edge asymmetry of electron-hole wave
functions allows for the control of the spatial distribution of
edge modes through carrier doping.

Here, we give an intuitive picture on how the valley-Hall
edge modes emerge in trilayer graphene. In the absence of
interlayer coupling, a gated trilayer graphene is composed of
three single layer graphene stacks with their electronic bands
relatively shifted by the external potential difference. When the
interlayer coupling is further included, gaps open at the bulk
band crossing points. Simultaneously, a pair of edge mode
is formed at each valley point, i.e., bands labeled by A,B at
valley K and E,F at valley K ′. Based on the fact that A,F (B,E)
are located at the same boundary, we can attribute that the
band labeling with A,F (B,E) originates from one of the top
(bottom) flat band. And the central flat bands connect with
the bulk conduction (valence) bands to form the special band
labeled with C,D, which gives rise to the unbalance edge mode.

Therefore, we find an interesting scenario where both the
valley polarized current directions as well as their location at
a given edge can be appropriately switched through electric
gating or controlling the carrier density. The above anomalous
features of the unbalanced edge modes in ABC trilayer
graphene are preserved when the system is brought into a
topological insulator phase.

Z2 topological insulator edge modes. Spin-orbit coupling
strengths for carbon atoms in graphene were estimated to have
an extremely small value of the order of 10−7 eV, rendering
an almost negligible effect for both intrinsic and Rashba
SOC in graphene under realistic conditions.16,17 However,
interactions with substrates18 or adatoms19 that introduce an
additional interatomic effective electric field can increase
the Rashba-type SOC to energy scale orders of meV. The
interplay of Rashba SOC with the layer inversion symmetry
breaking potential in bilayer graphene was shown to trigger
an interesting phase transition from a quantum valley-Hall
phase into a valley-protected topological insulator phase.20

We show that a similar topological phase transition is also
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FIG. 2. (Color online) Band structures of zigzag [(a) and (c)] and
armchair [(b) and (d)] trilayer graphene ribbons at a fixed interlayer
potential difference U = 0.1t with different Rashba SOC. (a),
(b) tR = 0.05t , six edge states, shown as blue (thick) lines, appear
at each valley in zigzag ribbon; no gapless edge state exists inside
the bulk gap of armchair ribbon, though there are some emerging
gapped edge bands. (c), (d) tR = 0.12t , one more pair of edge states
are induced at each valley of the zigzag ribbon, and gapless edge
states are now formed inside the bulk gap of the armchair ribbon.

found in gated trilayer graphene, but with additional unique
features. The effect of a Rashba SOC is to split the spin
degeneracy of the bands and lead to an eventual formation
of time-reversal invariance protected gapless edge modes for
sufficiently strong Rashba SOC tR . In Fig. 2, we show the
band structure evolution as a function of tR for both zigzag
[Figs. 2(a) and 2(c)] and armchair [Figs. 2(b) and 2(d)] trilayer
ribbons at a fixed potential difference U = 0.1t . Edge states
are plotted as blue (thick) lines to distinguish from the bulk
bands in black (thin) lines.

When a small Rashba SOC is introduced, i.e., tR = 0.05t ,
the bulk band gap of the system starts to decrease and the
spin degeneracy of the bulk bands is lifted. In Fig. 2(a) for
the zigzag ribbon, one can observe that three spin-degenerate
pairs of edge states are split into six pairs of nondegenerate
edge modes, still preserving the uneven spatial distribution at
opposite edges: Four pairs of edge states propagating along
one edge, while only two pairs traveling along the other edge,
as shown in Fig. 3(a). Simultaneously, edge modes start to
emerge within the bulk gap for the armchair ribbon as shown
in Fig. 2(b).

With a further increase of Rashba SOC, the bulk band gap
continues to decrease while the system remains in the quantum
valley-Hall insulator (QVHI) phase. The system finally reaches
a critical point at tR = 0.094t , where the bulk gap completely
closes. Beyond this point, the bulk band gap reopens, which
suggests a topological phase transition. In the following, we
demonstrate the characteristics of the resulting edge modes
in zigzag-terminated trilayer graphene ribbon after the phase
transition.
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FIG. 3. (Color online) Schematic plot of the edge modes cor-
responding to the conventional QVHI phase and strong TI phases.
(a) Four (two) pairs of valley-helical edge states are localized at
the upper (lower) boundary. When they encounter the armchair edge
the intervalley scattering backscatters the edge state associated with
valley K to the counterpropagating edge state encoded with valley
K ′. (b) The major difference from (a) is that one more pair of
time-reversal invariance protected spin-helical edge states emerges
at each boundary of the zigzag or armchair trilayer graphene ribbon.
Note that in the zigzag ribbon geometry, all the edge modes are
associated with both spin and valley degrees of freedom.

Figures 2(c) and 2(d) show the band structures for a
larger Rashba SOC tR = 0.12t . In zigzag-terminated trilayer
graphene, we find a different behavior with respect to the
bilayer case, where one pair of edge states merges and
disappears into the bulk bands.20 Here, a different pair of edge
states emerges from the bulk at both valleys K and K ′, giving
rise to a total of eight pairs of edge modes inside the bulk
gap [see Fig. 2(c)]. The resulting edge modes have a rather
surprising spatial arrangement, as we show in the schematic
plot in Fig. 3(b): Five pairs of edge states are located at the
upper boundary, while three pairs are located at the lower
boundary. The odd pairs of spin-helical edge states propagating
in a time-reversal invariant system indicate a topological
insulator (TI) state. In this way, we provide an intuitional
picture showing that unequal numbers of edge state pairs at
opposite sample boundaries can exist in a graphene-based TI
system due to the protection of large valley separation.

A further confirmation of the topological insulator is
the appearance of two pairs of gapless edge states in the
armchair-terminated trilayer graphene ribbon: There is one
(odd) pair of edge states flowing along each boundary of
the armchair ribbon [see the vertical direction of Fig. 2(d)].
Based on the above analysis, we can obtain a schematic
diagram of the topological insulator edge states in trilayer
graphene, as illustrated in Fig. 3(b): There is one pair of
time-reversal invariance protected edge states circulating along
any boundaries, while the remaining edge modes can only
propagate along zigzag boundaries due to the intervalley
scattering present in an armchair edge. Note that the five (three)
pairs of edge modes at the upper (lower) boundary are equally
weighted and nontrivial.

Another important signature of TI is the Z2 topological
number that characterizes the band topology.12,21 Using the

0.00 0.05 0.10 0.15
0.00

0.04

0.08

2D TI  
Z

2
=1

(b)

t
R
 / t

0.150.100.050.00
0.00

0.05

0.10

t
R
 / t

U
 / 

t

0

0

0.15
0.0

0.1

(a)

QVHI  
Z

2
=0

Δ 
/ t ε 

/ t

k
x

FIG. 4. (Color online) (a) Phase diagram of ABC trilayer
graphene in the parameter space of tR and U . Colors represent the
bulk gap size. Two phases are clearly separated: a conventional QVHI
phase with Z2 = 0, and the two-dimensional (2D) TI phase with
Z2 = 1. The dashed line trace corresponds to the potential difference
U = 0.1t , which is exhibited in (b). The bulk gap shown in (b) closes
and reopens once in the chosen scale, signaling a topological phase
transition from the QVHI phase to the 2D TI phase. The inset shows
that the gap closing point is not at the exact K point. The solid (blue)
curves are the bulk band structure of gated trilayer graphene around
valley K at the critical Rashba SOC t c

R = 0.094t , while the dashed
lines plot the band structure of single layer pristine graphene, where
the crossing point is exactly at the K point.

method described in Ref. 22, we numerically compute the Z2

topological number for our system, and the results show that
Z2 = 0 before the phase transition, while Z2 = 1 after the
phase transition, consistent with our band structure analysis.

Phase diagram. To give a complete understanding on how
the QVHI phase evolves as functions of tR and U , we present
a “phase diagram” of the bulk band gap � in Fig. 4(a). Color
maps are used to indicate the bulk gap magnitude. The two
separate regimes correspond to a conventional QVHI phase
with Z2 = 0 and σv

xy = 3e2/h (considering both spins) and
a topological insulator phase with Z2 = 1, respectively. As a
guide to the eye, we plot the bulk gap dependence as a function
of tR at a fixed potential difference U = 0.1t in Fig. 4(b) that
shows one gap closure and reopening as we discussed before.

Different from the topological phase transition in bilayer
graphene occurring exactly at K and K ′ points, in trilayer
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graphene the bulk band gaps close at some points away from
the exact valley K/K ′ points [see the inset of Fig. 4(b)].
As a consequence, the low-energy continuum model cannot
correctly capture this nontrivial topological insulator phase.
Therefore, although the obtained topological insulator phase
in trilayer graphene is still associated with valley degrees
of freedom, one cannot calculate a well-defined valley-Hall
conductivity from the corresponding continuum model.

Summary and discussions. We have studied the spatial
imbalance and valley current polarization of the edge modes
in gated trilayer graphene. The spatially uneven distribution
of edge modes arises from the half-integer quantum valley-
Hall conductivity of trilayer graphene that challenges the
conventional understanding of how edge modes are related
with the bulk topology. These features can in principle be
explored in a doubly gated trilayer device that would allow for
a direct control of the edge modes, either by modifying the
carrier doping or reversing the sign of the interlayer potential
difference. Although perfect zigzag trilayer graphene may
not be experimentally accessible in current conditions, it is
argued that a substantial contribution of quantum transport in
realistic samples of bulk gapped multilayers might still be
mediated by valley-Hall edge modes.23 In such cases, the
experimental signatures of edge mode imbalance in trilayer
graphene discussed in this Rapid Communication should have
measurable consequences in electron transport experiments,
e.g., in the form of orbital moments13 generated by the
imbalanced current carrying edge modes.

Another noteworthy finding reported in the present work
is that the trilayer graphene can be turned into a topological

insulator phase in the presence of sufficiently large Rashba
SOC, where the distribution of the edge modes at opposite
boundaries remains uneven. Due to the special structure of
zigzag ribbon without intervalley scattering, we show that
the numbers of edge mode pairs at both boundaries are odd,
and most importantly, they are unequal, i.e., five pairs at one
boundary while three pairs at the other. When these edge states
encounter the armchair edge, only one pair of topologically
protected edge modes can survive due to the presence of strong
intervalley scattering.

Finally, we discuss the stability of the unbalanced edge
states in the presence of external disorders. As demonstrated
in Ref. 24, the valley-Hall edge modes can be easily destroyed
by short-range disorders due to the backscattering between
valleys. On the contrary, it is found that long-range (smooth)
disorders can strongly suppress the backscattering. Moreover,
in graphene the impurity scattering in graphene mainly arises
from the long-range Coulomb scatterers. Therefore, the pro-
posed unbalanced edge modes are robust against the smooth
disorders and should be detectable in a realistic zigzag trilayer
graphene ribbon. Recently, it is reported25,26 that surface states
in weak topological insulators having an even number of Dirac
cones are very robust as long as the perturbation does not break
the time-reversal symmetry.
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C. Laubschat, ibid. 100, 107602 (2008); O. Rader, A. Varykhalov,
J. Sánchez-Barriga, D. Marchenko, A. Rybkin, and A. M. Shikin,
ibid. 102, 057602 (2009); A. Varykhalov and O. Rader, Phys. Rev.
B 80, 035437 (2009).

19Z. H. Qiao, S. A. Yang, W. X. Feng, W.-K. Tse, J. Ding, Y. G. Yao,
J. Wang, and Q. Niu, Phys. Rev. B 82, 161414(R) (2010); J. Ding,
Z. H. Qiao, W. X. Feng, Y. G. Yao, and Q. Niu, ibid. 84, 195444
(2011); H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov,
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